1. Anderson, M.T.: Cheeger–Gromov theory and applications to general relativity. In: Chruściel, P.T., Friedrich, H. (eds.) The Einstein Equations and the Large Scale Behavior of Gravitational Fields. Birkhäuser, Basel (2004) . arXiv:gr-qc/0208079
2. Beem, J.K.: A metric topology for causally continuous completions. Gen. Relativ. Gravit. 8(4), 245–257 (1977)
3. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry, 2nd edn. Taylor & Francis Inc., Milton Park (1996)
4. Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2002)
5. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. American Mathematical Society, Providence, RI (2001)