A technical note on large normal-stress differences observed in a novel self-assembling functionalized dipeptide surfactant solution

Author:

Maklad Osama M.,McAulay Kate,Lerouge Sandra,Adams Dave J.,Poole Robert J.

Abstract

AbstractA number of functionalised dipeptides self-assemble in water under specific conditions to give micellar aggregates. The micellar aggregates formed depend on the exact molecular structure and are important to understand as they control the properties both of the micellar phase and also of the gel phase which can be formed from these precursor solutions. Here, we investigate the rheological properties of a functionalised dipeptide which behaves as a surfactant at high pH. This solution has been shown previously to exhibit very “stringy” behaviour, and this has previously been characterised using capillary breakup extensional rheometry (CaBER). In the current technical note, we extend the rheological characterisation of an exemplar precursor solution via small-amplitude oscillatory shear and steady shear. Using a cone-and-plate geometry and a dedicated protocol, we can measure the first normal-stress difference N1 and using a parallel-plate geometry to also measure (N1-N2), subsequently determining the second normal-stress difference N2. In so doing, we confirm that these systems are highly elastic, e.g. for shear rates greater than ~ 30 s−1, corresponding to a Weissenberg number based on the longest relaxation time ~ 330, N1 > 10τ where τ is the shear stress, and also, we find that N2 can be significant, is negative and approximately equal in magnitude to ~ 0.36 ± 0.05 N1. Significant uncertainties associated with the normal-stress difference data led to us using a range of different rheometers (and geometries) and highlight the issues with determining N2 using this two-measurement approach. Despite these uncertainties, the non-negligible value of the second-normal stress difference is demonstrated for these fluids.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3