Non-linear dilational rheology of liquid-liquid interfaces stabilized by dipeptide hydrogels

Author:

Carbonell-Aviñó Fernando,Clegg Paul S.

Abstract

AbstractWe investigate the effects of salt concentration on the rheological properties of dipeptide hydrogel fibres at liquid-liquid interfaces. The interfaces were subjected to large amplitude oscillatory dilation (LAOD) experiments across a range of oscillation strains and frequencies. Lissajous plots of pressure-strain were used for characterizing the viscoelastic properties and for identifying apparent yielding. We show that key aspects of the rheological response of the interfaces vary significantly with salt concentration. At low strain, independent of salt concentration, Lissajous curves show an almost elliptical shape. As the strain is increased, asymmetry in Lissajous curves evidences a non-linear response. The departure from an ellipse is most obvious at negative strain (at moderate to high salt concentrations) and is suggestive of strain-hardening on compression. The Lissajous curves tilt towards the diagonal at elevated salt concentration demonstrating that the interfaces are becoming increasingly elastic. However, increasing the frequency of the oscillation has little systematic effect. We infer that the addition of salt leads to the development of structure on the interfaces from our observations strain-hardening and of the increasingly elastic response. To fully capture the range of behaviour, we suggest a modification of the analysis to calculate the strain-hardening ratio S used to quantify the degree of non-linearities from Lissajous figures, so as to better reveal the presence of instant strain-softening and strain-hardening responses.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3