The effect of GnRH-a on the angiogenesis of endometriosis

Author:

Filindris Theodoros,Papakonstantinou Efthymia,Keramida Maria,Panteris Eleftherios,Kalogeropoulos Sotiris,Georgopoulos Neoklis,Taniguchi Fuminori,Adonakis George,Harada Tasuku,Kaponis ApostolosORCID

Abstract

Abstract Purpose Neoangiogenesis is necessary for adhesion and invasiveness of endometriotic lesions in women affected by endometriosis. Vascular endothelial growth factor (VEGF) is one of the main components of angiogenesis and is part of the major pathway tissue factor (TF)-protease activated receptor-2 (PAR-2)-VEGF that leads to neoangiogenesis. Specificity protein 1 (SP1) is a transcriptional factor that has recently been studied for its crucial role in angiogenesis via a specific pathway. We hypothesize that by blocking angiogenetic pathways we can suppress endometriotic lesions. Gonadotrophin-releasing hormone-agonists (GnRH-a) are routinely used, especially preoperatively, in endometriosis. It would be of great interest to clarify which angiogenetic pathways are affected and, thereby, pave the way for further research into antiangiogenetic effects on endometriosis. Methods We used quantitative real-time polymerase chain reaction (qRT-PCR) to study mRNA expression levels of TF, PAR-2, VEGF, and SP1 in endometriotic tissues of women who underwent surgery for endometriosis and received GnRH-a (leuprolide acetate) preoperatively. Results VEGF, TF, and PAR-2 expression is significantly lower in patients who received treatment (p < 0,001) compared to those who did not, whereas SP1 expression is not altered (p = 0.779). Conclusions GnRH-a administration does affect some pathways of angiogenesis in endometriotic lesions, but not all of them. Therefore, supplementary treatments that affect the SP1 pathway of angiogenesis should be developed to enhance the antiangiogenetic effect of GnRH-a in patients with endometriosis. Trial registration Clinicaltrial.gov ID: NCT06106932.

Funder

University of Patras

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3