Magnetotail response during a strong substorm as observed by GEOTAIL in the distant tail

Author:

Belehaki A.,McEntire R. W.,Kokubun S.,Yamamoto T.

Abstract

Abstract. Simultaneous energetic particle and magnetic field observations from the GEOTAIL spacecraft in the distant tail (XGSM≈ –150 Re) have been analysed to study the response of the Earth's magnetotail during a strong substorm (AE ≤ 680 nT). At geosynchronous altitude, LANL spacecraft recorded three electron injections between 0030 UT and 0130 UT, which correspond to onsets observed on the ground at Kiruna Ground Observatory. The Earth's magnetotail responded to this substorm with the ejection of five plasmoids, whose size decreases from one plasmoid to the next. Since the type of magnetic structure detected by a spacecraft residing the lobes, depends on the Z extent of the structure passing underneath the spacecraft, GEOTAIL is first engulfed by a plasmoid structure; six minutes later it detects a boundary layer plasmoid (BLP) and finally at the recovery phase of the substorm GEOTAIL observes three travelling compression regions (TCRs). The time-of-flight (TOF) speed of these magnetic structures was estimated to range between 510 km/s and 620 km/s. The length of these individual plasmoids was calculated to be between 28 Re and 56 Re. The principal axis analysis performed on the magnetic field during the TCR encountered, has confirmed that GEOTAIL observed a 2-D perturbation in the X-Z plane due to the passage of a plasmoid underneath. The first large plasmoid that engulfed GEOTAIL was much more complicated in nature probably due to the external, variable draped field lines associated with high beta plasma sheet and the PSBL flux tubes surrounding the plasmoid. From the analysis of the energetic particle angular distribution, evidence was found that ions were accelerated from the distant X-line at the onset of the burst associated with the first magnetic structure. Key words. Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail).

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thin current sheets: from the work of Ginzburg and Syrovatskii to the present day;Physics-Uspekhi;2016-11-30

2. A pseudo-magnetic flux rope observed by the THEMIS satellites in the Earth's magnetotail;Journal of Atmospheric and Solar-Terrestrial Physics;2011-10

3. Global and local disturbances in the magnetotail during reconnection;Annales Geophysicae;2007-05-08

4. Magnetosphere energetics during substorm events: IMP8 and GEOTAIL observations;Journal of Atmospheric and Solar-Terrestrial Physics;2001-05

5. Whistler mode waves in the magnetotail;Journal of Geophysical Research: Space Physics;1999-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3