<i>Article:</i> Heating of beam ions by ion acoustic waves

Author:

Vaivads A.,Rönnmark K.,Oscarsson T.,André M.

Abstract

Abstract. Satellite measurements show that ion beams above the auroral acceleration region are heated to hundreds of eV in a direction perpendicular to the magnetic field. We show that ion acoustic waves may be responsible for much of this heating. Even in the absence of a positive slope in the velocity distribution of the beam ions, ion acoustic waves can be generated by a fan instability. We present analytical estimates of the wave growth rate and ion beam heating rate. These estimates, which are confirmed by particle simulations, indicate that the perpendicular temperature of the beam ions will increase by 30 eV/s, or by 1 eV in 20–25 km. From the simulations we also conclude that the heating saturates at a perpendicular temperature around 200 eV, which is consistent with observations.Key words. Ionosphere (wave-particle interactions) · Magnetospheric Physics (plasma waves and instabilities) · Space plasma physics (wave-particle interactions).

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global and local processes of thin current sheet formation during substorm growth phase;Journal of Atmospheric and Solar-Terrestrial Physics;2021-09

2. Ionospheric Outflow During the Substorm Growth Phase: THEMIS Observations of Oxygen Ions at the Plasma Sheet Boundary;Journal of Geophysical Research: Space Physics;2020-07

3. KAWs in Magnetosphere-Ionosphere Coupling;Kinetic Alfvén Waves in Laboratory, Space, and Astrophysical Plasmas;2020

4. The complex nature of storm-time ion dynamics: Transport and local acceleration;Geophysical Research Letters;2016-10-13

5. Localization of finite frequency inertial Alfvén wave and turbulent spectrum in low beta plasmas;Astrophysics and Space Science;2015-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3