Observations of day-to-day variability in precursor signatures to equatorial F-region plasma depletions

Author:

Fagundes P. R.,Sahai Y.,Batista I. S.,Abdu M. A.,Bittencourt J. A.,Takahashi H.

Abstract

Abstract. In December 1995, a campaign was carried out to study the day-to-day variability in precursor signatures to large-scale ionospheric F-region plasma irregularities, using optical diagnostic techniques, near the magnetic equator in the Brazilian sector. Three instruments were operated simultaneously: (a) an all-sky (180° field of view) imaging system for observing the OI 630 nm nightglow emission at Alcântara (2.5°S, 44.4°W); (b) a digisonde (256-Lowell) at São Luis (2.6°S, 44.2°W); and (c) a multi-channel tilting filter-type zenith photometer for observing the OI 630 nm and mesospheric nightglow emissions at Fortaleza (3.9°S, 38.4°W). During the period December 14-18, 1995 (summer in the southern hemisphere), a good sequence of the OI 630 nm imaging observations on five consecutive nights were obtained, which are presented and discussed in this study. The observing period was geomagnetically quiet to moderate  (Kp = 0+ to 5+; Dst = 18 nT to -37 nT). On four nights, out of the five observation nights, the OI 630 nm imaging pictures showed formations of transequatorial north-south aligned intensity depletions, which are the optical signatures of large-scale ionospheric F-region plasma bubbles. However, considerable day-to-day variability in the onset and development of the plasma depleted bands was observed. On one of the nights it appears that the rapid uplifting of the F-layer in the post-sunset period, in conjunction with gravity wave activity at mesospheric heights, resulted in generation of very strong plasma bubble irregularities. One of the nights showed an unusual formation of north-south depleted band in the western sector of the imaging system field of view, but the structure did not show any eastward movement, which is a normal characteristic of plasma bubbles. This type of irregularity structure, which probably can be observed only by wide-angle imaging system, needs more investigations for a better understanding of its behaviour.Key words. Atmospheric composition and structure (airglow and aurora) · Ionosphere (equatorial ionosphere; ionospheric irregularities)

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3