A study of transient variations in the Earth's electromagnetic field at equatorial electrojet latitudes in western Africa (Mali and the Ivory Coast)

Author:

Vassal J.,Menvielle M.,Cohen Y.,Dukhan M.,Doumouya V.,Boka K.,Fambitakoye O.

Abstract

Abstract. In the framework of the French-Ivorian participation to the IEEY, a network of 10 electromagnetic stations were installed at African longitudes. The aim of this experiment was twofold: firstly, to study the magnetic signature of the equatorial electrojet on the one hand, and secondly, to characterize the induced electric field variations on the other hand. The first results of the magnetic field investigations were presented by Doumouya and coworkers. Those of the electric field experiment will be discussed in this study. The electromagnetic experiment will be described. The analysis of the electromagnetic transient variations was conducted in accordance with the classical distinction between quiet and disturbed magnetic situations. A morphological analysis of the recordings is given, taking into consideration successively quiet and disturbed magnetic situations, with the results interpreted in terms of the characterization of external and internal sources. Particular attention was paid to the effects of the source characteristics on the induced field of internal origin, and to the bias they may consequently cause to the results of electromagnetic probing of the Earth; the source effect in electromagnetic induction studies. During quiet magnetic situations, our results demonstrated the existence of two different sources. One of these, the SRE source, was responsible for most of the magnetic diurnal variation and corresponded to the well-known magnetic signature of the equatorial electrojet. The other source (the SR*E source) was responsible for most of the electric diurnal variation, and was also likely to be an ionospheric source. Electric and magnetic diurnal variations are therefore related to different ionospheric sources, and interpreting the electric diurnal variation as induced by the magnetic field diurnal variation is not relevant. Furthermore, the magnetotelluric probing of the upper mantle at dip equator latitudes with the electromagnetic diurnal variation is consequently impossible to perform. In the case of irregular variations, the source effect related to the equatorial electrojet is also discussed. A Gaussian model of equatorial electrojet was considered, and apparent resistivities were computed for two models of stratified Earth corresponding to the average resistive structure of the two tectonic provinces crossed by the profile: a sedimentary basin and a cratonic shield. The apparent resistivity curves were found to depend significantly on both the model used and the distance to the center of the electrojet. These numerical results confirm the existence of a daytime source effect related to the equatorial electrojet. Furthermore, we show that the results account for the observed differences between daytime and night-time apparent resistivity curves. In particular, it was shown that electromagnetic probing of the Earth using the classical Cagniard-Tikhonov magnetotelluric method is impossible with daytime recordings made at dip latitude stations.Key words. Electromagnetics (Transient and time do- main) Geomagnetism and paleomagnetism (geomagne- tic induction) Ionosphere (equatorial ionosphere)

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3