Method of characteristics in spherical geometry applied to a Harang-discontinuity situation

Author:

Amm O.

Abstract

Abstract. The method of characteristics for obtaining spatial distributions of ionospheric electrodynamic parameters from ground-based spatial observations of the ground magnetic disturbance and the ionospheric electric field is presented in spherical geometry. The method includes tools for separation of the external magnetic disturbance, its continuation to the ionosphere, and calculation of ionospheric equivalent currents. Based on these and the measured electric field distribution, the ionospheric Hall conductance is calculated as the primary output of the method. By estimating the Hall- to-Pedersen conductance ratio distribution, the remaining ionospheric electrodynamic parameters are inferred. The method does not assume ∇×E=0 to allow to study time-dependent situations. The application of this method to a Harang discontinuity (HD) situation on 27 October 1977, 17:39 UT, reveals the following: (1) The conductances at and north of the HD are clearly reduced as compared to the eastern electrojet region. (2) Plasma flow across the HD is observed, but almost all horizontal current is diverted into upward-flowing field-aligned currents (FACs) there. (3) The FACs connected to the Hall currents form a latitudinally aligned sheet with a magnitude peak between the electrically and magnetically defined HD, where break-up arcs are often observed. Their magnitude is larger than that of the more uniformly distributed FACs connected to the Pedersen currents. They also cause the southward shift of the magnetically defined HD with respect to the electrically defined one. (4) A tilt of the HD with respect to geomagnetic latitude as proposed by an earlier study on the same event, which used composite vector plot technique, and by statistical studies, is not observed in our single time-step analysis.Key words. Ionosphere · Electric fields and currents · Instruments and techniques · Magnetospheric physics · Current systems

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3