Abstract
Abstract. The Global Positioning System (GPS) observables are affected by the ionosphere. The dispersive nature of this effect and the use of two frequencies in the GPS observations make possible to measure the ionospheric total electron content (TEC) from dual frequency GPS data. In this work we test the concept of permanent monitoring of TEC using a network of GPS receivers at high latitudes. We have used GPS data from five permanent receivers in Scandinavia, from 1-30 January 1994, with geographic latitudes ranging from 57.4°N to 78.9°N. The results show the capability of the method to monitor the evolution of TEC as a function of time and geographical location. We have detected night-time enhancements almost every night for some of the stations, and we have also been able to produce maps of the instantaneous TEC as a function of both latitude and longitude around the GPS network. We also present some of the current limitations in the use of GPS for estimating TEC at high latitudes such as the difficulties in solving for cycle-slips, and the necessity of reliable values for the receiver and satellite differential instrumental biases.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献