Machine learning versus conventional clinical methods in guiding management of heart failure patients—a systematic review
Author:
Funder
American Heart Association
RICBAC foundation
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine
Link
https://link.springer.com/content/pdf/10.1007/s10741-020-10007-3.pdf
Reference33 articles.
1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM et al (2017) 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 136:e137–ee61
2. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200
3. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Rev Esp Cardiol (Engl Ed) 69:1167
4. Ponikowski P, Anker SD, AlHabib KF, Cowie MR, Force TL, Hu S et al (2014) Heart failure: preventing disease and death worldwide. ESC Heart Failure 1:4–25
5. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ et al (2016) Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133:e38–e360
Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Refining heart disease prediction accuracy using hybrid machine learning techniques with novel metaheuristic algorithms;International Journal of Cardiology;2024-12
2. A Review on Machine Learning Applications: CVI Risk Assessment;Tehnicki vjesnik - Technical Gazette;2024-08-15
3. Identifying Predictors of Heart Failure Readmission in Patients From a Statutory Health Insurance Database: Retrospective Machine Learning Study;JMIR Cardio;2024-07-23
4. The Utility of Artificial Intelligence and Machine Learning in the Diagnosis of Takotsubo Cardiomyopathy: A Systematic Review;Heart and Mind;2024-07
5. Diagnostic and Prognostic Electrocardiogram-Based Models for Rapid Clinical Applications;Canadian Journal of Cardiology;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3