Accurate and efficient evaluation of the ionization potentials of extreme ultraviolet photoresists using density functionals and semi-empirical methods

Author:

Du Kun,Ying Jiafeng,Han Lixin,Xue Jie,Xin Hanshen,Zhang Jianhua,Li Haoyuan

Abstract

AbstractExtreme ultraviolet (EUV) photoresists have become the core materials in lithography with nanometer-sized patterns and are actively explored on the path to realizing smaller critical dimensions. These photoresists can be small molecule-, polymer-, or organic–inorganic hybrid-based, with the full molecular working mechanism under investigation. For the rational design of EUV photoresists, theoretical guidance using tools like first-principle calculations and multi-scale simulations can be of great help. Considering the extremely high standard of accuracy in EUV lithography, it is critical to ensure the adoption of the appropriate methodologies in the theoretical evaluation of EUV photoresists. However, it is known that density functionals and semi-empirical methods differ in accuracy and efficiency, without a universal rule across materials. This poses a challenge in developing a reliable theoretical framework for calculating EUV photoresists. Here, we present a benchmark investigation of density functionals and semi-empirical methods on the three main types of EUV photoresists, focusing on the ionization potential, a key parameter in their microscopic molecular reactions. The vertical detachment energies (VDE) and adiabatic detachment energies (ADE) were calculated using 12 functionals, including pure functionals, hybrid functionals, Minnesota functionals, and the recently developed optimally tuned range-separated (OTRS) functionals. Several efficient semi-empirical methods were also chosen, including AM1, PM6, PM7, and GFN1-xTB in the extended tight-binding theoretical framework. These results guide the accurate and efficient calculation of EUV photoresists and are valuable for the development of multi-scale lithography protocols. Graphical Abstract

Funder

National Natural Science Foundation of China

Shanghai Committee of Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3