Abstract
AbstractBoron-based multiple resonance thermally activated delayed fluorescent (MR-TADF) emitters have shown great promises for applications in high-definition displays. This class of heteroatom-doped nanographene materials typically show very narrow-band emission, small singlet–triplet split (ΔEST) values, high Photoluminescence quantum yield, quality chemical and thermal stabilities. Undoubtedly, boron-based MR-TADF emitters hold a leading position in satisfying the wide-color gamut standard of BT. 2020 (The International Telecommunication Union announced a new color gamut standard of broadcast service television for ultra-high-definition TV in 2012). Thus, the development of novel boron-based MR-TADF emitters attracted a great deal of attention from both academia and industry. Here, a comprehensive overview of the latest advances in boron-based MR-TADF emitters is presented, therein, rational strategies for molecular designs, as well as the consequent optical behavior and efficiency and lifetime improvement in organic light-emitting diodes (OLED) devices are discussed. Finally, the challenges as well as some future research directions to unlock the full potential of this fascinating class of materials are provided.
Funder
National Natural Science Foundation of China
Guangdong Major Project of Basic and Applied Basic Research
Guangdong Basic and Applied Basic Research Foundation
China Postdoctoral Science Foundation
Publisher
Springer Science and Business Media LLC