Author:
Pourjamal Negar,Yazdi Narjes,Halme Aleksi,Joncour Vadim Le,Laakkonen Pirjo,Saharinen Pipsa,Joensuu Heikki,Barok Mark
Abstract
AbstractHuman epidermal growth factor 2 (HER2)-positive breast cancer with lung metastases resistant to targeted agents is a common therapeutic challenge. Absence of preclinical lung metastasis models that are resistant to multiple anti-HER2 targeted drugs hampers the development of novel therapies. We established a novel HER2-positive breast cancer cell line (L-JIMT-1) with a high propensity to form lung metastases from the parenteral JIMT-1 cell line by injecting JIMT-1 cells into immunodeficient SCID mice. Lung metastases developed in all mice injected with L-JIMT-1 cells, and more rapidly and in greater numbers compared with the parental JIMT-1 cells. L-JIMT-1 cells expressed more epidermal growth factor receptor and HER2 than JIMT-1 cells. L-JIMT-1 cells were resistant to all five tyrosine kinase inhibitors tested in vitro (afatinib, erlotinib, lapatinib, sapitinib, and tucatinib). When we compared JIMT-1 and L-JIMT-1 sensitivity to three HER2-targeting antibody-drug conjugates (ADCs) trastuzumab emtansine (T-DM1), trastuzumab deruxtecan (T-DXd), and disitamab vedotin (DV) in vitro, JIMT-1 cells were resistant T-DXd, partially sensitive to T-DM1, and sensitive to DV, while L-JIMT-1 cells were resistant to both T-DM1 and T-DXd, but moderately sensitive to DV. In a mouse model, all three ADCs inhibited the growth of L-JIMT-1 lung metastases compared to a vehicle, but DV and T-DXd more strongly than T-DM1, and DV treatment led to the smallest tumor burden. The L-JIMT breast cancer lung metastasis model developed may be useful in the evaluation of anti-cancer agents for multiresistant HER2-positive advanced breast cancer.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献