Speeding up the Euler scheme for killed diffusions

Author:

Çetin Umut,Hok Julien

Abstract

AbstractLet $X$ X be a linear diffusion taking values in $(\ell ,r)$ ( , r ) and consider the standard Euler scheme to compute an approximation to $\mathbb{E}[g(X_{T}){\mathbf{1}}_{\{T<\zeta \}}]$ E [ g ( X T ) 1 { T < ζ } ] for a given function $g$ g and a deterministic $T$ T , where $\zeta =\inf \{t\geq 0: X_{t} \notin (\ell ,r)\}$ ζ = inf { t 0 : X t ( , r ) } . It is well known since Gobet (Stoch. Process. Appl. 87:167–197, 2000) that the presence of killing introduces a loss of accuracy and reduces the weak convergence rate to $1/\sqrt{N}$ 1 / N with $N$ N being the number of discretisations. We introduce a drift-implicit Euler method to bring the convergence rate back to $1/N$ 1 / N , i.e., the optimal rate in the absence of killing, using the theory of recurrent transformations developed in Çetin (Ann. Appl. Probab. 28:3102–3151, 2018). Although the current setup assumes a one-dimensional setting, multidimensional extension is within reach as soon as a systematic treatment of recurrent transformations is available in higher dimensions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3