Author:
Doldi Alessandro,Frittelli Marco
Abstract
Abstract
The objective of this paper is to develop a duality between a novel entropy martingale optimal transport (EMOT) problem and an associated optimisation problem. In EMOT, we follow the approach taken in the entropy optimal transport (EOT) problem developed in Liero et al. (Invent. Math. 211:969–1117, 2018), but we add the constraint, typical of martingale optimal transport (MOT) theory, that the infimum of the cost functional is taken over martingale probability measures. In the associated problem, the objective functional, related via Fenchel conjugacy to the entropic term in EMOT, is no longer linear as in (martingale) optimal transport. This leads to a novel optimisation problem which also has a clear financial interpretation as a nonlinear subhedging problem. Our theory allows us to establish a nonlinear robust pricing–hedging duality which also covers a wide range of known robust results. We also focus on Wasserstein-induced penalisations and study how the duality is affected by variations in the penalty terms, with a special focus on the convergence of EMOT to the extreme case of MOT.
Funder
Università degli Studi di Milano
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Finance,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献