A Black–Scholes inequality: applications and generalisations

Author:

Tehranchi Michael R.

Abstract

Abstract The space of call price curves has a natural noncommutative semigroup structure with an involution. A basic example is the Black–Scholes call price surface, from which an interesting inequality for Black–Scholes implied volatility is derived. The binary operation is compatible with the convex order, and therefore a one-parameter sub-semigroup gives rise to an arbitrage-free market model. It is shown that each such one-parameter semigroup corresponds to a unique log-concave probability density, providing a family of tractable call price surface parametrisations in the spirit of the Gatheral–Jacquier SVI surface. An explicit example is given to illustrate the idea. The key observation is an isomorphism linking an initial call price curve to the lift zonoid of the terminal price of the underlying asset.

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Finance,Statistics and Probability

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the implied volatility skew outside the at-the-money point;Quantitative Finance;2024-06-09

2. Smiles in delta;Quantitative Finance;2023-10-03

3. Refined analysis of the no-butterfly-arbitrage domain for SSVI slices;Journal of Computational Finance;2023

4. No arbitrage global parametrization for the eSSVI volatility surface;Quantitative Finance;2022-09-15

5. No Arbitrage SVI;SIAM Journal on Financial Mathematics;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3