Operando electrochemical SERS monitors nanoparticle reactions by capping agent fingerprints

Author:

Wonner Kevin,Murke Steffen,Alfarano Serena R.,Hosseini Pouya,Havenith Martina,Tschulik Kristina

Abstract

AbstractNanomaterials are frequently employed in daily life goods, including health, textile, and food industry. A comprehensive picture is lacking on the role of the capping agents, added ligand molecules, in case of nanoparticle reactions and degradation in aqueous solutions, like surface waters or biofluids. Here, we aim to elucidate the capping agent influence on nanoparticle reactivity probing two commonly employed capping agents citrate and polyvinylpyrrolidone (PVP). Their influence on silver nanoparticle (AgNP) transformation is studied, which is particularly important due to its application as an antimicrobial agent. We induce oxidation and reduction processes of AgNPs in halide solutions and we monitor the associated transformations of particles and capping agents by spectro-electrochemical surface-enhanced Raman spectroscopy (SERS). Raman bands of the capping agents are used here to track chemical changes of the nanoparticles under operando conditions. The sparingly soluble and non-plasmon active silver salts (AgBr and AgCl) are formed under potential bias. In addition, we spectroscopically observe plasmon-mediated structural changes of citrate to cis- or trans-aconitate, while PVP is unaltered. The different behavior of the capping agents implies a change in the physical properties on the surface of AgNPs, in particular with respect to the surface accessibility. Moreover, we showcase that reactions of the capping agents induced by different external stimuli, such as applied bias or laser irradiation, can be assessed. Our results demonstrate how SERS of capping agents can be exploited to operando track nanoparticle conversions in liquid media. This approach is envisaged to provide a more comprehensive understanding of nanoparticle fates in complex liquid environments and varied redox conditions.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3