Gate-controlled supercurrent effect in dry-etched Dayem bridges of non-centrosymmetric niobium rhenium

Author:

Koch Jennifer,Cirillo Carla,Battisti Sebastiano,Ruf Leon,Kakhaki Zahra Makhdoumi,Paghi Alessandro,Gulian Armen,Teknowijoyo Serafim,De Simoni Giorgio,Giazotto Francesco,Attanasio Carmine,Scheer Elke,Di Bernardo Angelo

Abstract

AbstractThe application of a gate voltage to control the superconducting current flowing through a nanoscale superconducting constriction, named as gate-controlled supercurrent (GCS), has raised great interest for fundamental and technological reasons. To gain a deeper understanding of this effect and develop superconducting technologies based on it, the material and physical parameters crucial for the GCS effect must be identified. Top-down fabrication protocols should also be optimized to increase device scalability, although studies suggest that top-down fabricated devices are more resilient to show a GCS. Here, we investigate gated superconducting nanobridges made with a top-down fabrication process from thin films of the non-centrosymmetric superconductor niobium rhenium with varying ratios of the constituents (NbRe). Unlike other devices previously reported and made with a top-down approach, our NbRe devices systematically exhibit a GCS effect when they were fabricated from NbRe thin films with small grain size and etched in specific conditions. These observations pave the way for the realization of top-down-made GCS devices with high scalability. Our results also imply that physical parameters like structural disorder and surface physical properties of the nanobridges, which can be in turn modified by the fabrication process, are crucial for a GCS observation, providing therefore also important insights into the physics underlying the GCS effect.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3