Multidimensional thermally-induced transformation of nest-structured complex Au-Fe nanoalloys towards equilibrium

Author:

Johny Jacob,Prymak Oleg,Kamp Marius,Calvo Florent,Kim Se-Ho,Tymoczko Anna,El-Zoka Ayman,Rehbock Christoph,Schürmann Ulrich,Gault Baptiste,Kienle Lorenz,Barcikowski Stephan

Abstract

AbstractBimetallic nanoparticles are often superior candidates for a wide range of technological and biomedical applications owing to their enhanced catalytic, optical, and magnetic properties, which are often better than their monometallic counterparts. Most of their properties strongly depend on their chemical composition, crystallographic structure, and phase distribution. However, little is known of how their crystal structure, on the nanoscale, transforms over time at elevated temperatures, even though this knowledge is highly relevant in case nanoparticles are used in, e.g., high-temperature catalysis. Au-Fe is a promising bimetallic system where the low-cost and magnetic Fe is combined with catalytically active and plasmonic Au. Here, we report on the in situ temporal evolution of the crystalline ordering in Au-Fe nanoparticles, obtained from a modern laser ablation in liquids synthesis. Our in-depth analysis, complemented by dedicated atomistic simulations, includes a detailed structural characterization by X-ray diffraction and transmission electron microscopy as well as atom probe tomography to reveal elemental distributions down to a single atom resolution. We show that the Au-Fe nanoparticles initially exhibit highly complex internal nested nanostructures with a wide range of compositions, phase distributions, and size-depended microstrains. The elevated temperature induces a diffusion-controlled recrystallization and phase merging, resulting in the formation of a single face-centered-cubic ultrastructure in contact with a body-centered cubic phase, which demonstrates the metastability of these structures. Uncovering these unique nanostructures with nested features could be highly attractive from a fundamental viewpoint as they could give further insights into the nanoparticle formation mechanism under non-equilibrium conditions. Furthermore, the in situ evaluation of the crystal structure changes upon heating is potentially relevant for high-temperature process utilization of bimetallic nanoparticles, e.g., during catalysis.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3