Different micro/nano-scale patterns of surface materials influence osteoclastogenesis and actin structure

Author:

Akasaka Tsukasa,Tamai Miho,Yoshimura Yoshitaka,Ushijima Natsumi,Numamoto Shinichiro,Yokoyama Atsuro,Miyaji Hirofumi,Takata Ryo,Yamagata Shuichi,Sato Yoshiaki,Nakanishi Ko,Yoshida Yasuhiro

Abstract

AbstractThe surface topography of a material can influence osteoclast activity. However, the surface structural factors that promote osteoclast activity have not yet been investigated in detail. Therefore, we investigated osteoclastogenesis by testing various defined patterns with different dimensions and shapes. The systematic patterns, made of a cyclo-olefin polymer, were prepared at a micron-, submicron-, and nano-scale with a groove, hole, or pillar shape with a 1:1 pitch ratio. RAW264.7 cells were cultured on these patterns in the presence of the receptor activator of NF-κB ligand (RANKL). Osteoclast formation was induced in the order: pillar > groove ≥ hole. The two-dimensional factors also indicated that submicron-sized patterns strongly induced osteoclast formation. The optimal pillar dimension for osteoclast formation was 500 nm in diameter and 2 µm in height. Furthermore, we observed two types of characteristic actin structure, i.e., belt-like structures with small hollow circles and isolated ring-like structures, which formed on or around the pillars depending on size and height. Furthermore, resorption pits were observed mainly on the top of calcium phosphate-coated pillars. Thus, osteoclasts prefer convex shapes, such as pillars for differentiation and resorption. Our results indicate that osteoclastogenesis can be controlled by designing surfaces with specific morphologies.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3