Mechanosynthesis of polymer-stabilized lead bromide perovskites: insight into the formation and phase conversion of nanoparticles
-
Published:2020-11-02
Issue:4
Volume:14
Page:1078-1086
-
ISSN:1998-0124
-
Container-title:Nano Research
-
language:en
-
Short-container-title:Nano Res.
Author:
Jiang Guocan,Erdem Onur,Hübner René,Georgi Maximilian,Wei Wei,Fan Xuelin,Wang Jin,Demir Hilmi Volkan,Gaponik Nikolai
Abstract
AbstractThe application of polymers to replace oleylamine (OLA) and oleic acid (OA) as ligands for perovskite nanocrystals is an effective strategy to improve their stability and durability especially for the solution-based processing. Herein, we report a mechanosynthesis of lead bromide perovskite nanoparticles (NPs) stabilized by partially hydrolyzed poly(methyl methacrylate) (h-PMMA) and high-molecular-weight highly-branched poly(ethylenimine) (PEI-25K). The as-synthesized NP solutions exhibited green emission centered at 516 nm, possessing a narrow full-width at half-maximum of 17 nm and as high photoluminescence quantum yield (PL QY) as 85%, while showing excellent durability and resistance to polar solvents, e.g., methanol. The colloids of polymer-stabilized NPs were directly processable to form stable and strongly-emitting thin films and solids, making them attractive as gain media. Furthermore, the roles of h-PMMA and PEI-25K in the grinding process were studied in depth. The h-PMMA can form micelles in the grinding solvent of dichloromethane to act as size-regulating templates for the growth of NPs. The PEI-25K with large amounts of amino groups induced significant enrichment of PbBr2 in the reaction mixture, which in turn caused the formation of CsPb2Br5-mPbBr2 and CsPbBr3-Cs4PbBr6-nCsBr NPs. The presence of CsPbBr3-Cs4PbBr6-nCsBr NPs was responsible for the high PL QY, as the Cs4PbBr6 phase with a wide energy bandgap can passivate the surface defects of the CsPbBr3 phase. This work describes a direct and facile mechanosynthesis of polymer-coordinated perovskite NPs and promotes in-depth understanding of the formation and phase conversion for perovskite NPs in the grinding process.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Reference53 articles.
1. Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750. 2. Yan, F.; Tan, S. T.; Li, X.; Demir, H. V. Light generation in lead halide perovskite nanocrystals: LEDs, color converters, lasers, and other applications. Small 2019, 15, 1902079. 3. Lin, K. B.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 2018, 562, 245–248. 4. Yan, F.; Xing, J.; Xing, G. C.; Quan, L.; Tan, S. T.; Zhao, J. X.; Su, R.; Zhang, L. L.; Chen, S.; Zhao, Y. W. et al. Highly efficient visible colloidal lead-halide perovskite nanocrystal light-emitting diodes. Nano Lett. 2018, 18, 3157–3164. 5. Zhou, Q. C.; Bai, Z. L.; Lu, W. G.; Wang, Y. T.; Zou, B. S.; Zhong, H. Z. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater. 2016, 28, 9163–9168.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|