Enhancing zinc–air battery performance by constructing three-dimensional N-doped carbon coating multiple valence Co and MnO heterostructures
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s12274-023-6404-5.pdf
Reference49 articles.
1. Sun, W.; Wang, F.; Zhang, B.; Zhang, M. Y.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C. S. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 2021, 371, 46–51.
2. Wang, Q. C.; Tang, S. H.; Wang, Z. Q.; Wu, J.; Bai, Y.; Xiong, Y.; Yang, P. Y.; Wang, Y. C.; Tan, Y.; Liu, W. et al. Electrolyte tuned robust interface toward fast-charging Zn–air battery with atomic Mo site catalyst. Adv. Funct. Mater. 2023, 33, 2307390.
3. Sarkar, S.; Biswas, A.; Siddharthan, E. E.; Thapa, R.; Dey, R. S. Strategic modulation of target-specific isolated Fe, Co single-atom active sites for oxygen electrocatalysis impacting high power Zn–air battery. ACS Nano 2022, 16, 7890–7903.
4. Arafat, Y.; Azhar, M. R.; Zhong, Y. J.; Abid, H. R.; Tadé, M. O.; Shao, Z. P. Advances in zeolite imidazolate frameworks (ZIFs) derived bifunctional oxygen electrocatalysts and their application in zinc-air batteries. Adv. Energy Mater. 2021, 11, 2100514.
5. Huang, Y. F.; Kong, F. T.; Pei, F. L.; Wang, L. Z.; Cui, X. Z.; Shi, J. L. Modulating the electronic structure of hollow Cu/Cu3P heteronanoparticles to boost the oxygen reduction performance in long-lasting Zn–air battery. EcoMat 2023, 5, e12335.
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Structure adjustment on Fe-based electrocatalyst to regulate oxygen reduction reaction selectivity for Zn-air battery and H2O2 production;Inorganic Chemistry Communications;2024-10
2. Highly dispersed ternary metal FeZnCe with nitrogen/oxygen co-doped carbon materials for efficient oxygen electroreduction;Chemical Engineering Journal;2024-10
3. The Recent Advancement of Graphene-Based Cathode Material for Rechargeable Zinc–Air Batteries;Processes;2024-08-12
4. Facile synthesis of MnO/NC nanohybrids toward high-efficiency ORR for zinc–air battery;RSC Advances;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3