Dielectric size optimization for high power density in large-scale triboelectric nanogenerators

Author:

Karabiber Abdulkerim,Dirik Ömer,Koc Feyyaz,Ozel Faruk

Abstract

AbstractTriboelectric nanogenerators (TENGs) have emerged as a promising technology to harvest electrical energy from natural motions such as human movement, wind, and water flow. Although TENGs show significant potential in small-scale applications, developing large-scale TENGs capable of generating high power remains a significant challenge. Several factors that can affect the performance of large-scale TENGs are being investigated to overcome this challenge, including the size and configuration of dielectric materials. This study optimizes dielectrics regarding surface area, thickness, and multicell configuration to improve harvested electrical power density in large-scale TENGs. In the studies, glass fiber was used as the positive dielectric, and multipurpose white silicone was used as the negative dielectric because of their high tribo-potential, durability, and easy accessibility. In the size optimization phase, dielectric thicknesses and surface areas that provide the maximum power density were determined. Subsequently, horizontal and vertical multicell configurations were examined to efficiently integrate size-optimized dielectrics. The results reveal that large-scale TENGs with vertical multicell configurations can achieve high and usable energy density for electronics. The findings provide valuable insight into the development of large-scale TENGs with advanced power generation capabilities.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3