Skip to main content
Log in

The influence of patterned microporous layer on the proton exchange membrane fuel cell performances

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The ordered membrane electrode assembly (MEA) has gained much attention because of its potential in improving mass transfer. Here, a comprehensive study was conducted on the influence of the patterned microporous layer (MPL) on the proton exchange membrane fuel cell performances. When patterned MPL is employed, grooves are generated between the catalyst layer and the gas diffusion layer. It is found that the grooves do not increase the contact resistance, and it is beneficial for water retention. When the MEA works under low humidity scenarios, the MEA with patterned MPL illustrated higher performance, due to the reduced inner resistance caused by improved water retention, leading to increased ionic conductivity. However, when the humidity is higher than 80% or working under high current density, the generated water accumulated in the grooves and hindered the oxygen mass transport, leading to a reduced MEA performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ren, X. F.; Wang, Y. R.; Liu, A. M.; Zhang, Z. H.; Lv, Q. Y.; Liu, B. H. Current progress and performance improvement of Pt/C catalysts for fuel cells. J. Mater. Chem. A 2020, 8, 24284–24306.

    Article  CAS  Google Scholar 

  2. Wang, H. P.; Xu, Z. X.; Lin, W.; Yang, X.; Gu, X. R.; Zhu, W.; Zhuang, Z. B. Improving the water electrolysis performance by manipulating the generated nano/micro-bubbles using surfactants. Nano Res. 2023, 16, 420–426.

    Article  ADS  CAS  Google Scholar 

  3. Singla, M. K.; Nijhawan, P.; Oberoi, A. S. Hydrogen fuel and fuel cell technology for cleaner future: A review. Environ. Sci. Pollut. Res. 2021, 28, 15607–15626.

    Article  CAS  Google Scholar 

  4. Lü, X. Q.; Qu, Y.; Wang, Y. D.; Qin, C.; Liu, G. A comprehensive review on hybrid power system for PEMFC-HEV: Issues and strategies. Energy Convers. Manage. 2018, 171, 1273–1291.

    Article  Google Scholar 

  5. Manoharan, Y.; Hosseini, S. E.; Butler, B.; Alzhahrani, H.; Senior, B. T. F.; Ashuri, T.; Krohn, J. Hydrogen fuel cell vehicles; current status and future prospect. Appl. Sci. 2019, 9, 2296.

    Article  CAS  Google Scholar 

  6. Yang, P. F.; Xu, L. L.; Trogadas, P.; Coppens, M. O.; Lan, Y. Bioinspired supramolecular macrocycle hybrid membranes with enhanced proton conductivity. Nano Res. 2024, 17, 797–805.

    Article  CAS  Google Scholar 

  7. Hosseini, M. G.; Mahmoodi, R. Preparation method of Ni@Pt/C nanocatalyst affects the performance of direct borohydride-hydrogen peroxide fuel cell: Improved power density and increased catalytic oxidation of borohydride. J. Colloid Interface Sci. 2017, 500, 264–275.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Christmann, K.; Friedrich, K. A.; Zamel, N. Activation mechanisms in the catalyst coated membrane of PEM fuel cells. Prog. Energy Combust. Sci. 2021, 85, 100924.

    Article  Google Scholar 

  9. Xu, X. Q.; Cao, L. H.; Yang, Y.; Zhao, F.; Bai, X. T.; Zang, S. Q. Hybrid nafion membranes of ionic hydrogen-bonded organic framework materials for proton conduction and PEMFC applications. ACS Appl. Mater. Interfaces 2021, 13, 56566–56574.

    Article  CAS  PubMed  Google Scholar 

  10. Han, A.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

    Article  CAS  Google Scholar 

  11. Zhu, P.; Xiong, X.; Wang, X. L.; Ye, C. L.; Li, J. Z.; Sun, W. M.; Sun, X. H.; Jiang, J. J.; Zhuang, Z. B.; Wang, D. S. et al. Regulating the FeN4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction. Nano Lett. 2022, 22, 9507–9515.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Chen, R. Z.; Chen, S. H.; Wang, L. Q.; Wang, D. S. Nanoscale metal particle modified single-atom catalyst: Synthesis, characterization, and application. Adv. Mater. 2024, 36, 2304713.

    Article  CAS  Google Scholar 

  13. Cao, S.; Sun, T.; Li, J. R.; Li, Q. Z.; Hou, C. C.; Sun, Q. The cathode catalysts of hydrogen fuel cell: From laboratory toward practical application. Nano Res. 2023, 16, 4365–4380.

    Article  ADS  Google Scholar 

  14. Chen, M.; Zhao, C.; Sun, F. M.; Fan, J. T.; Li, H.; Wang, H. J. Research progress of catalyst layer and interlayer interface structures in membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) system. eTransportation 2020, 5, 100075.

    Article  CAS  Google Scholar 

  15. Athanasaki, G.; Jayakumar, A.; Kannan, A. M. Gas diffusion layers for PEM fuel cells: Materials, properties and manufacturing—A review. Int. J. Hydrogen Energy 2023, 48, 2294–2313.

    Article  CAS  Google Scholar 

  16. Reshetenko, T.; Ben, B. L. Impact of a gas diffusion layer’s structural and textural properties on oxygen mass transport resistance in the cathode and performance of proton exchange membrane fuel cells. Electrochim. Acta 2021, 371, 137752.

    Article  CAS  Google Scholar 

  17. Prass, S.; Hasanpour, S.; Sow, P. K.; Phillion, A. B.; Mérida, W. Microscale X-ray tomographic investigation of the interfacial morphology between the catalyst and micro porous layers in proton exchange membrane fuel cells. J. Power Sources 2016, 319, 82–89.

    Article  ADS  CAS  Google Scholar 

  18. Mason, T. J.; Millichamp, J.; Neville, T. P.; El-Kharouf, A.; Pollet, B. G.; Brett, D. J. L. Effect of clamping pressure on ohmic resistance and compression of gas diffusion layers for polymer electrolyte fuel cells. J. Power Sources 2012, 219, 52–59.

    Article  ADS  CAS  Google Scholar 

  19. Chen, Q.; Niu, Z. Q.; Li, H. K.; Jiao, K.; Wang, Y. Recent progress of gas diffusion layer in proton exchange membrane fuel cell: Two-phase flow and material properties. Int. J. Hydrogen Energy 2021, 46, 8640–8671.

    Article  CAS  Google Scholar 

  20. Flick, S.; Schwager, M.; McCarthy, E.; Mérida, W. Designed experiments to characterize PEMFC material properties and performance. Appl. Energy 2014, 129, 135–146.

    Article  ADS  CAS  Google Scholar 

  21. Iranzo, A.; Boillat, P. CFD simulation of the transient gas transport in a PEM fuel cell cathode during AC impedance testing considering liquid water effects. Energy 2018, 158, 449–457.

    Article  CAS  Google Scholar 

  22. Li, H. Y.; Cheng, X. J.; Yan, X. H.; Shen, S. Y.; Zhang, J. L. A perspective on influences of cathode material degradation on oxygen transport resistance in low Pt PEMFC. Nano Res. 2023, 16, 377–390.

    Article  ADS  CAS  Google Scholar 

  23. Shrestha, P.; Ouellette, D.; Lee, J.; Ge, N.; Wong, A. K. C.; Muirhead, D.; Liu, H.; Banerjee, R.; Bazylak, A. Graded microporous layers for enhanced capillary-driven liquid water removal in polymer electrolyte membrane fuel cells. Adv. Mater. Interfaces 2019, 6, 1901157.

    Article  CAS  Google Scholar 

  24. Yin, B. F.; Xu, S.; Yang, S. Y.; Dong, F. Influence of microelliptical groove gas diffusion layer (GDL) on transport behavior of proton exchange membrane fuel cell (PEMFC). Int. J. Heat Mass Transf. 2021, 180, 121793.

    Article  CAS  Google Scholar 

  25. Sassin, M. B.; Garsany, Y.; Gould, B. D.; Swider-Lyons, K. Impact of compressive stress on MEA pore structure and its consequence on PEMFC performance. J. Electrochem. Soc. 2016, 163, F808–F815.

    Article  CAS  Google Scholar 

  26. Simon, C.; Hasché, F.; Gasteiger, H. A. Influence of the gas diffusion layer compression on the oxygen transport in PEM fuel cells at high water saturation levels. J. Electrochem. Soc. 2017, 164, F591–F599.

    Article  CAS  Google Scholar 

  27. Millichamp, J.; Mason, T. J.; Neville, T. P.; Rajalakshmi, N.; Jervis, R.; Shearing, P. R.; Brett, D. J. L. Mechanisms and effects of mechanical compression and dimensional change in polymer electrolyte fuel cells—A review. J. Power Sources 2015, 284, 305–320.

    Article  ADS  CAS  Google Scholar 

  28. Wu, N. R.; Liu, Y.; Zhang, S. P.; Hou, D. D.; Yang, R. Z.; Qi, Y.; Wang, L. D. Modulation of transport at the interface in the microporous layer for high power density proton exchange membrane fuel cells. J. Colloid Interface Sci. 2024, 657, 428–437.

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Nouri-Khorasani, A.; Bonakdarpour, A.; Fang, B. Z.; Wilkinson, D. P. Rational design of multimodal porous carbon for the interfacial microporous layer of fuel cell oxygen electrodes. ACS Appl. Mater. Interfaces 2022, 14, 9084–9096.

    Article  CAS  PubMed  Google Scholar 

  30. Lin, R.; Chen, L.; Zheng, T.; Tang, S. H.; Yu, X. T.; Dong, M. C.; Hao, Z. X. Interfacial water management of gradient microporous layer for self-humidifying proton exchange membrane fuel cells. Int. J. Heat Mass Transf. 2021, 175, 121340.

    Article  CAS  Google Scholar 

  31. Lee, J.; Liu, H.; George, M. G.; Banerjee, R.; Ge, N.; Chevalier, S.; Kotaka, T.; Tabuchi, Y.; Bazylak, A. Microporous layer to carbon fibre substrate interface impact on polymer electrolyte membrane fuel cell performance. J. Power Sources 2019, 422, 113–121.

    Article  ADS  CAS  Google Scholar 

  32. Alrwashdeh, S. S.; Manke, I.; Markötter, H.; Haußmann, J.; Arlt, T.; Hilger, A.; Al-falahat, A. M.; Klages, M.; Scholta, J.; Banhart, J. Improved performance of polymer electrolyte membrane fuel cells with modified microporous layer structures. Energy Technol. 2017, 5, 1612–1618.

    Article  CAS  Google Scholar 

  33. Song, H. Y.; Liu, Y. T.; Zhang, W. S.; Zhang, X. F.; Yin, X.; Li, J. F.; Wu, G. P. Rational design of carbon network structure in microporous layer toward enhanced mass transport of proton exchange membrane fuel cell. J. Power Sources 2022, 539, 231623.

    Article  CAS  Google Scholar 

  34. El Oualid, S.; Lachat, R.; Candusso, D.; Meyer, Y. Characterization process to measure the electrical contact resistance of gas diffusion layers under mechanical static compressive loads. Int. J. Hydrogen Energy 2017, 42, 23920–23931.

    Article  CAS  Google Scholar 

  35. Vikram, A.; Chowdhury, P. R.; Phillips, R. K.; Hoorfar, M. Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression—Part I: Electrical conductivity. J. Power Sources 2016, 320, 274–285.

    Article  ADS  CAS  Google Scholar 

  36. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    Article  ADS  CAS  Google Scholar 

  37. Hu, K. D.; Luo, L.; Sun, X. M.; Li, H. Unraveling the effects of gas species and surface wettability on the morphology of interfacial nanobubbles. Nanoscale Adv. 2022, 4, 2893–2901.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao, Y.; Montana, A.; Chen, F. X. Evaluation of porosity and thickness on effective diffusivity in gas diffusion layer. J. Power Sources 2017, 342, 252–265.

    Article  ADS  CAS  Google Scholar 

  39. Song, H. Y.; Liu, Y.; Zhang, X. F.; Zhang, W. S.; Wu, G. P. Bimodal effect on mass transport of proton exchange membrane fuel cells by regulating the content of whisker-like carbon nanotubes in microporous layer. J. Power Sources 2023, 560, 232714.

    Article  CAS  Google Scholar 

  40. Wang, S. Z.; Wang, L. N.; Chen, W.; Cao, Y. L.; Cui, L. R.; Zhou, M. Z.; Zhu, W.; Zhuang, Z. B. Estimation of oxygen transport properties in proton exchange membrane fuel cells under dry and wet operating conditions. Int. J. Hydrogen Energy 2024, 57, 616–624.

    Article  CAS  Google Scholar 

  41. Zenyuk, I. V.; Kumbur, E. C.; Litster, S. Deterministic contact mechanics model applied to electrode interfaces in polymer electrolyte fuel cells and interfacial water accumulation. J. Power Sources 2013, 241, 379–387.

    Article  ADS  CAS  Google Scholar 

  42. Ozden, A.; Shahgaldi, S.; Li, X. G.; Hamdullahpur, F. A graphene-based microporous layer for proton exchange membrane fuel cells: Characterization and performance comparison. Renew. Energy 2018, 126, 485–494.

    Article  CAS  Google Scholar 

  43. Kleemann, J.; Finsterwalder, F.; Tillmetz, W. Characterisation of mechanical behaviour and coupled electrical properties of polymer electrolyte membrane fuel cell gas diffusion layers. J. Power Sources 2009, 190, 92–102.

    Article  ADS  CAS  Google Scholar 

  44. Hu, M. R.; Cao, G. Y. The effect of the backing layer design on the mass transfer in a proton exchange membrane fuel cell. Energy Convers. Manage. 2022, 269, 116086.

    Article  CAS  Google Scholar 

  45. Qiu, D. K.; Janßen, H.; Peng, L. F.; Irmscher, P.; Lai, X. M.; Lehnert, W. Electrical resistance and microstructure of typical gas diffusion layers for proton exchange membrane fuel cell under compression. Appl. Energy 2018, 231, 127–137.

    Article  ADS  CAS  Google Scholar 

  46. Yan, X. H.; Lin, C.; Zheng, Z. F.; Chen, J. R.; Wei, G. H.; Zhang, J. L. Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression. Appl. Energy 2020, 258, 114073.

    Article  Google Scholar 

  47. Ramaswamy, N.; Gu, W. B.; Ziegelbauer, J. M.; Kumaraguru, S. Carbon support microstructure impact on high current density transport resistances in PEMFC cathode. J. Electrochem. Soc. 2020, 167, 064515.

    Article  ADS  CAS  Google Scholar 

  48. Wang, S. Z.; Li, X. H.; Wan, Z. H.; Chen, Y. N.; Tan, J. T.; Pan, M. Effect of hydrophobic additive on oxygen transport in catalyst layer of proton exchange membrane fuel cells. J. Power Sources 2018, 379, 338–343.

    Article  ADS  CAS  Google Scholar 

  49. Owejan, J. P.; Trabold, T. A.; Mench, M. M. Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells. Int. J. Heat Mass Transf. 2014, 71, 585–592.

    Article  CAS  Google Scholar 

  50. Muirhead, D.; Banerjee, R.; George, M. G.; Ge, N.; Shrestha, P.; Liu, H.; Lee, J.; Bazylak, A. Liquid water saturation and oxygen transport resistance in polymer electrolyte membrane fuel cell gas diffusion layers. Electrochim. Acta 2018, 274, 250–265.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation (No. Z210016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Li or Zhongbin Zhuang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Hu, K., Chen, W. et al. The influence of patterned microporous layer on the proton exchange membrane fuel cell performances. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6569-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6569-5

Keywords

Navigation