Author:
Su Panpan,Huang Wenjuan,Zhang Jiangwei,Guharoy Utsab,Du Qinggang,Sun Qiao,Jiang Qike,Cheng Yi,Yang Jie,Zhang Xiaoli,Liu Yongsheng,Jiang San Ping,Liu Jian
Abstract
AbstractDefective electrocatalysts, especially for intrinsic defective carbon, have aroused a wide concern owing to high spin and charge densities. However, the designated nitrogen species favorable for creating defects by the removal of nitrogen, and the influence of defects for the coordination structure of active site and oxygen reduction reaction (ORR) activity have not been elucidated. Herein, we designed and synthesized a pair of electrocatalysts, denoted as Fe-N/C and Fe-ND/C for coordination sites of atomic iron-nitrogen and iron-nitrogen/defect configuration embedded in hollow carbon spheres, respectively, through direct pyrolysis of their corresponding hollow carbon spheres adsorbed with Fe(acac)3. The nitrogen defects were fabricated via the evaporation of pyrrolic-N on nitrogen doped hollow carbon spheres. Results of comparative experiments between Fe-N/C and Fe-ND/C reveal that Fe-ND/C shows superior ORR activity with an onset potential of 30 mV higher than that of Fe-N/C. Fe-ND sites are more favorable for the enhancement of ORR activity. Density functional theory (DFT) calculation demonstrates that Fe-ND/C with proposed coordination structure of FeN4−x (0<x<4) anchored by OH as axial ligand during ORR, weakens the strong binding of OH* intermediate and promotes the desorption of OH* as rate-determining step for ORR in alkaline electrolyte. Thus, Fe-ND/C electrocatalysts present much better ORR activity compared with that of Fe-N/C with proposed coordination structure of FeN4.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献