Author:
Perez-Garrido Laura,Ortega-Muñoz Mariano,Hernandez-Mateo Fernando,Javier Lopez-Jaramillo F.,Santoyo-Gonzalez Francisco
Abstract
AbstractSelenium (Se) has been defined as the “Janus element”, with one face showing antioxidant activity and the other pro-oxidant activity. The biological effect of Se depends on both dose and speciation. Se nanoparticles are attracting major interest, although their large-scale preparation for biomedical applications is not trivial. We hypothesize that acid anhydride-coated carbon dots (AA-CD) are an attractive platform for preparing nanoparticles containing chemically defined Se. The reaction of AA-CD with 3-selenocyanatopropan-1-amine yields carbon dots bearing selenocyanate and carboxylate groups (CD-SeCN) that allow for tuning the hydrosolubility. CD-SeCN has a Se content of 0.36 µmol per mg of nanoparticles, and they show the typical photoluminescence of carbon dots. The selenocyanate groups (SeCN) exhibited glutathione peroxidase-like activity and cytotoxicity. Data show that antioxidant behavior differs between normal and tumor cells, and the evaluation on HEK293 and A549 cells reveals that the toxicity of CD-SeCN depends on dose, time, and intracellular glutathione (GSH) content. The toxicity of CD-SeCN decreases with the time of incubation and the cell death mechanism switches from necrosis to apoptosis, indicating that CD-SeCN is neutralized. Additionally, high levels of intracellular GSH exert a protective effect. These results support a pharmacological potential in cancers with low levels of intracellular GSH. The use of AA-CD as nanoplatforms is a general strategy that paves the way for the engineering of advanced nanosystems.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献