Bioinspired supramolecular macrocycle hybrid membranes with enhanced proton conductivity

Author:

Yang Pengfei,Xu Linlin,Trogadas Panagiotis,Coppens Marc-Olivier,Lan Yang

Abstract

AbstractEnhancing the proton conductivity of proton exchange membranes (PEMs) is essential to expand the applications of proton exchange membrane fuel cells (PEMFCs). Inspired by the proton conduction mechanism of bacteriorhodopsin, cucurbit[n]urils (CB[n], wherenis the number of glycoluril units,n= 6, 7, or 8) are introduced into sulfonated poly(ether ether ketone) (SPEEK) matrix to fabricate hybrid PEMs, employing a nature-inspired chemical engineering (NICE) methodology. The carbonyl groups of CB[n] act as proton-conducting sites, while the host–guest interaction between CB[n] and water molecules offers extra proton-conducting pathways. Additionally, the molecular size of CB[n] aids in their dispersion within the SPEEK matrix, effectively bridging the unconnected proton-conducting sulfonic group domains within the SPEEK membrane. Consequently, all hybrid membranes exhibit significantly enhanced proton conductivity. Notably, the SPEEK membrane incorporating 1 wt.% CB[8] (CB[8]/SPEEK-1%) demonstrates the highest proton conductivity of 198.0 mS·cm−1at 60 °C and 100% relative humidity (RH), which is 228% greater than that of the pure SPEEK membrane under the same conditions. Moreover, hybrid membranes exhibit superior fuel cell performance. The CB[8]/SPEEK-1% membrane achieves a maximum power density of 214 mW·cm−2, representing a 140% improvement over the pure SPEEK membrane (89 mW·cm−2) at 50 °C and 100% RH. These findings serve as a foundation for constructing continuous proton-conducting pathways within membranes by utilizing supramolecular macrocycles as fuel cell electrolytes and in other applications.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3