Potential of Multi-temporal InSAR for Detecting Retrogressive Thaw Slumps: A Case of the Beiluhe Region of the Tibetan Plateau

Author:

Jiao Zhiping,Xu Zhida,Guo Rui,Zhou Zhiwei,Jiang Liming

Abstract

AbstractPermafrost degradation due to climate warming is severely reducing slope stability by increasing soil pore water pressure and decreasing shear strength. Retrogressive thaw slumps (RTSs) are among the most dynamic landforms in permafrost areas, which can result in the instability of landscape and ecosystem. However, the spatiotemporal characteristics of surface deformation of RTSs are still unclear, and the potentials of deformation properties in mapping large-scale RTSs need to be further assessed. In this study, we applied a multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR) method to map the spatiotemporal variations in surface deformation of RTSs in the Beiluhe region of the Tibetan Plateau by using 112 scenes of Sentinel-1 SAR data acquired from 2017 to 2021. The deformation rates of RTSs ranged from − 35 to 20 mm/year, and three typical motion stages were inferred by analyzing the deformation variation trend of the headwall of RTSs: stable, abrupt thaw, and linear subsidence. A total of 375 RTSs were identified in the Mati Hill region by combining InSAR-based deformation results with visual interpretation of optical remote sensing images. Among them, 76 RTSs were newly developed, and 26% more than the inventory derived from the optical images alone. This study demonstrated that the combination of InSAR-derived deformation with optical images has significant potential for detecting RTSs with high accuracy and efficiency at the regional scale.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Safety Research,Geography, Planning and Development,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3