Spatial Resilience to Wildfires through the Optimal Deployment of Firefighting Resources: Impact of Topography on Initial Attack Effectiveness

Author:

Sakellariou Stavros,Sfougaris Athanassios,Christopoulou Olga,Tampekis Stergios

Abstract

AbstractStrongly affected by the escalating impacts of climate change, wildfires have been increasing in frequency and severity around the world. The primary aim of this study was the development of specific territorial measures—estimating the optimal locations of firefighting resources—to enhance the spatial resilience to wildfires in the fire-prone region of Chalkidiki Prefecture in northern Greece. These measures focus on the resistance to wildfires and the adaptation of strategies to wildfire management, based on the estimation of burn probability, including the effect of anthropogenic factors on fire ignition. The proposed location schemes of firefighting resources such as vehicles consider both the susceptibility to fire and the influence of the topography on travel simulation, highlighting the impact of road slope on the initial firefighting attack. The spatial scheme, as well as the number of required firefighting forces is totally differentiated due to slope impact. When we ignore the topography effect, a minimum number of fire vehicles is required to achieve the maximization of coverage (99.2% of the entire study area) giving priority to the most susceptible regions (that is, employing 18 of 24 available fire vehicles). But when we adopt more realistic conditions that integrate the slope effect with travel time, the model finds an optimal solution that requires more resources (that is, employing all 24 available fire vehicles) to maximize the coverage of the most vulnerable regions within 27 min. This process achieves 80% of total coverage. The proposed methodology is characterized by a high degree of flexibility, and provides optimized solutions to decision makers, while considering key factors that greatly affect the effectiveness of the initial firefighting attack.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Safety Research,Geography, Planning and Development,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3