Effects of Rainfall and Underlying Surface on Flood Recession—The Upper Huaihe River Basin Case

Author:

Cheng Yashan,Sang Yanfang,Wang Zhonggen,Guo Yuhan,Tang Yin

Abstract

AbstractThe effects of rainfall and underlying surface conditions on flood recession processes are a critical issue for flood risk reduction and water use in a region. In this article, we examined and clarified the issue in the upper Huaihe River Basin where flood disasters frequently occur. Data on 58 rainstorms and flooding events at eight watersheds during 2006–2015 were collected. An exponential equation (with a key flood recession coefficient) was used to fit the flood recession processes, and their correlations with six potential causal factors—decrease rate of rainfall intensity, distance from the storm center to the outlet of the basin, basin area, basin shape coefficient, basin average slope, and basin relief amplitude—were analyzed by the Spearman correlation test and the Kendall tau test. Our results show that 95% of the total flood recession events could be well fitted with the coefficient of determination (R2) values higher than 0.75. When the decrease rate of rainfall intensity (Vi) is smaller than 0.2 mm/h2, rainfall conditions more significantly control the flood recession process; when Vi is greater than 0.2 mm/h2, underlying surface conditions dominate. The result of backward elimination shows that when Vi takes the values of 0.2–0.5 mm/h2 and is greater than 0.5 mm/h2, the flood recession process is primarily influenced by the basin’s average slope and basin area, respectively. The other three factors, however, indicate weak effects in the study area.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Safety Research,Geography, Planning and Development,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3