Author:
Yan Yan,Zhou Jiaojiao,Xie Cheng,Yin Shuyao,Hu Sheng,Wang Renchao
Abstract
AbstractChina’s economic development is closely related to oil and gas resources, and the country is investing heavily in pipeline construction. Slope geological hazards seriously affect the long-term safe operation of buried pipelines, usually causing pipeline leakage, property and environmental losses, and adverse social impacts. To ensure the safety of pipelines and reduce the probability of pipeline disasters, it is necessary to predict and quantitatively evaluate slope hazards. While there has been much research focus in recent years on the evaluation of pipeline slope disasters and the stress calculation of pipelines under hazards, existing methods only provide information on the occurrence probability of slope events, not whether a slope disaster will lead to pipeline damage. Taking the 2015 Xinzhan landslide in Guizhou Province, China, as an example, this study used discrete elements to simulate landslide events and determine the risk level and scope for pipeline damage, and then established a pipe-soil coupling model to quantitatively evaluate the impact of landslide hazards for pipelines in medium- and high-risk areas. The results provide a reference for future pipeline disaster prevention and control.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Safety Research,Geography, Planning and Development,Global and Planetary Change
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献