Economic Risk Assessment of Future Debris Flows by Machine Learning Method

Author:

Qiu Chenchen,Su Lijun,Pasuto Alessandro,Bossi Giulia,Geng Xueyu

Abstract

AbstractA reliable economic risk map is critical for effective debris-flow mitigation. However, the uncertainties surrounding future scenarios in debris-flow frequency and magnitude restrict its application. To estimate the economic risks caused by future debris flows, a machine learning-based method was proposed to generate an economic risk map by multiplying a debris-flow hazard map and an economic vulnerability map. We selected the Gyirong Zangbo Basin as the study area because frequent severe debris flows impact the area every year. The debris-flow hazard map was developed through the multiplication of the annual probability of spatial impact, temporal probability, and annual susceptibility. We employed a hybrid machine learning model—certainty factor-genetic algorithm-support vector classification—to calculate susceptibilities. Simultaneously, a Poisson model was applied for temporal probabilities, while the determination of annual probability of spatial impact relied on statistical results. Additionally, four major elements at risk were selected for the generation of an economic loss map: roads, vegetation-covered land, residential buildings, and farmland. The economic loss of elements at risk was calculated based on physical vulnerabilities and their economic values. Therefore, we proposed a physical vulnerability matrix for residential buildings, factoring in impact pressure on buildings and their horizontal distance and vertical distance to debris-flow channels. In this context, an ensemble model (XGBoost) was used to predict debris-flow volumes to calculate impact pressures on buildings. The results show that residential buildings occupy 76.7% of the total economic risk, while road-covered areas contribute approximately 6.85%. Vegetation-covered land and farmland collectively represent 16.45% of the entire risk. These findings can provide a scientific support for the effective mitigation of future debris flows.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3