Rapid Prediction Model for Urban Floods Based on a Light Gradient Boosting Machine Approach and Hydrological–Hydraulic Model

Author:

Xu Kui,Han Zhentao,Xu Hongshi,Bin Lingling

Abstract

AbstractGlobal climate change and sea level rise have led to increased losses from flooding. Accurate prediction of floods is essential to mitigating flood losses in coastal cities. Physically based models cannot satisfy the demand for real-time prediction for urban flooding due to their computational complexity. In this study, we proposed a hybrid modeling approach for rapid prediction of urban floods, coupling the physically based model with the light gradient boosting machine (LightGBM) model. A hydrological–hydraulic model was used to provide sufficient data for the LightGBM model based on the personal computer storm water management model (PCSWMM). The variables related to rainfall, tide level, and the location of flood points were used as the input for the LightGBM model. To improve the prediction accuracy, the hyperparameters of the LightGBM model are optimized by grid search algorithm and K-fold cross-validation. Taking Haidian Island, Hainan Province, China as a case study, the optimum values of the learning rate, number of estimators, and number of leaves of the LightGBM model are 0.11, 450, and 12, respectively. The Nash-Sutcliffe efficiency coefficient (NSE) of the LightGBM model on the test set is 0.9896, indicating that the LightGBM model has reliable predictions and outperforms random forest (RF), extreme gradient boosting (XGBoost), and k-nearest neighbor (KNN). From the LightGBM model, the variables related to tide level were analyzed as the dominant variables for predicting the inundation depth based on the Gini index in the study area. The proposed LightGBM model provides a scientific reference for flood control in coastal cities considering its superior performance and computational efficiency.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Safety Research,Geography, Planning and Development,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3