A Generalized Accelerated Failure Time Model to Predict Restoration Time from Power Outages

Author:

Jamal Tasnuba Binte,Hasan Samiul

Abstract

AbstractMajor disasters such as wildfire, tornado, hurricane, tropical storm, and flooding cause disruptions in infrastructure systems such as power and water supply, wastewater management, telecommunication, and transportation facilities. Disruptions in electricity infrastructure have negative impacts on sectors throughout a region, including education, medical services, financial services, and recreation. In this study, we introduced a novel approach to investigate the factors that can be associated with longer restoration time of power service after a hurricane. Considering restoration time as the dependent variable and using a comprehensive set of county-level data, we estimated a generalized accelerated failure time (GAFT) model that accounts for spatial dependence among observations for time to event data. The model fit improved by 12% after considering the effects of spatial correlation in time to event data. Using the GAFT model and Hurricane Irma’s impact on Florida as a case study, we examined: (1) differences in electric power outages and restoration rates among different types of power companies—investor-owned power companies, rural and municipal cooperatives; (2) the relationship between the duration of power outage and power system variables; and (3) the relationship between the duration of power outage and socioeconomic attributes. The findings of this study indicate that counties with a higher percentage of customers served by investor-owned electric companies and lower median household income faced power outage for a longer time. This study identified the key factors to predict restoration time of hurricane-induced power outages, allowing disaster management agencies to adopt strategies required for restoration process.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3