Evolving behaviour trees for supervisory control of robot swarms

Author:

Hogg Elliott,Hauert Sabine,Harvey David,Richards Arthur

Abstract

AbstractSupervisory control of swarms is essential to their deployment in real-world scenarios to both monitor their operation and provide guidance. We explore mechanisms by which humans can provide supervisory control to swarms to improve their performance. Rather than have humans guess the correct form of supervisory control, we use artificial evolution to learn effective human-readable strategies. Behaviour trees are applied to represent human-readable decision strategies which are produced through evolution. These strategies can be thoroughly tested and can provide knowledge to be used in the future in a variety of scenarios. A simulated set of scenarios are investigated where a swarm of robots have to explore varying environments and reach sets of objectives. Effective supervisory control strategies are evolved to explore each environment using different local swarm behaviours. The evolved behaviour trees are examined in detail alongside swarm simulations to enable clear understanding of the supervisory strategies. We conclude by identifying the strengths in accelerated testing and the benefits of this approach for scenario exploration and training of human operators.

Funder

University of Bristol

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Auction-Based Behavior Tree Evolution for Heterogeneous Multi-Agent Systems;Applied Sciences;2024-09-05

2. A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control;Lecture Notes in Computer Science;2024

3. Search Space Illumination of Robot Swarm Parameters for Trustworthy Interaction;Springer Proceedings in Advanced Robotics;2024

4. Social Exploration in Robot Swarms;Springer Proceedings in Advanced Robotics;2024

5. Semantic Collaboration for Multi-agent: Theory, Framework, and Prospects;Lecture Notes in Electrical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3