Second-order agent-based models of emergent behaviour of Dictyostelium discoideum and their inspiration for swarm robotics

Author:

Parhizkar Mohammad,Serugendo Giovanna Di Marzo,Nitschke Jahn,Hellequin Louis,Wade Assane,Soldati Thierry

Abstract

Abstract By studying and modelling the behaviour of Dictyostelium discoideum, we aim at deriving mechanisms useful for engineering collective artificial intelligence systems. This paper discusses a selection of agent-based models reproducing second-order behaviour of Dictyostelium discoideum, occurring during the migration phase; their corresponding biological illustrations; and how we used them as an inspiration for transposing this behaviour into swarms of Kilobots. For the models, we focus on: (1) the transition phase from first- to second-order emergent behaviour; (2) slugs’ uniform distribution around a light source; and (3) the relationship between slugs’ speed and length occurring during the migration phase of the life cycle of D. discoideum. Results show the impact of the length of the slug on its speed and the effect of ammonia on the distribution of slugs. Our computational results show similar behaviour to our biological experiments, using Ax2(ka) strain. For swarm robotics experiments, we focus on the transition phase, slugs’ chaining, merging and moving away from each other.

Funder

University of Geneva

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3