Non-parametric deconvolution using Bézier curves for quantification of cerebral perfusion in dynamic susceptibility contrast MRI

Author:

Chakwizira Arthur,Ahlgren André,Knutsson Linda,Wirestam RonnieORCID

Abstract

Abstract Objective Deconvolution is an ill-posed inverse problem that tends to yield non-physiological residue functions R(t) in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). In this study, the use of Bézier curves is proposed for obtaining physiologically reasonable residue functions in perfusion MRI. Materials and methods Cubic Bézier curves were employed, ensuring R(0) = 1, bounded-input, bounded-output stability and a non-negative monotonically decreasing solution, resulting in 5 parameters to be optimized. Bézier deconvolution (BzD), implemented in a Bayesian framework, was tested by simulation under realistic conditions, including effects of arterial delay and dispersion. BzD was also applied to DSC-MRI data from a healthy volunteer. Results Bézier deconvolution showed robustness to different underlying residue function shapes. Accurate perfusion estimates were observed, except for boxcar residue functions at low signal-to-noise ratio. BzD involving corrections for delay, dispersion, and delay with dispersion generally returned accurate results, except for some degree of cerebral blood flow (CBF) overestimation at low levels of each effect. Maps of mean transit time and delay were markedly different between BzD and block-circulant singular value decomposition (oSVD) deconvolution. Discussion A novel DSC-MRI deconvolution method based on Bézier curves was implemented and evaluated. BzD produced physiologically plausible impulse response, without spurious oscillations, with generally less CBF underestimation than oSVD.

Funder

Vetenskapsrådet

Hjärnfonden

Open access funding provided by Lund University.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3