Deep learning for efficient reconstruction of highly accelerated 3D FLAIR MRI in neurological deficits

Author:

Liebrand Luka C.,Karkalousos Dimitrios,Poirion Émilie,Emmer Bart J.,Roosendaal Stefan D.,Marquering Henk A.,Majoie Charles B. L. M.,Savatovsky Julien,Caan Matthan W. A.ORCID

Abstract

Abstract Objective To compare compressed sensing (CS) and the Cascades of Independently Recurrent Inference Machines (CIRIM) with respect to image quality and reconstruction times when 12-fold accelerated scans of patients with neurological deficits are reconstructed. Materials and Methods Twelve-fold accelerated 3D T2-FLAIR images were obtained from a cohort of 62 patients with neurological deficits on 3 T MRI. Images were reconstructed offline via CS and the CIRIM. Image quality was assessed in a blinded and randomized manner by two experienced interventional neuroradiologists and one experienced pediatric neuroradiologist on imaging artifacts, perceived spatial resolution (sharpness), anatomic conspicuity, diagnostic confidence, and contrast. The methods were also compared in terms of self-referenced quality metrics, image resolution, patient groups and reconstruction time. In ten scans, the contrast ratio (CR) was determined between lesions and white matter. The effect of acceleration factor was assessed in a publicly available fully sampled dataset, since ground truth data are not available in prospectively accelerated clinical scans. Specifically, 451 FLAIR scans, including scans with white matter lesions, were adopted from the FastMRI database to evaluate structural similarity (SSIM) and the CR of lesions and white matter on ranging acceleration factors from four-fold up to 12-fold. Results Interventional neuroradiologists significantly preferred the CIRIM for imaging artifacts, anatomic conspicuity, and contrast. One rater significantly preferred the CIRIM in terms of sharpness and diagnostic confidence. The pediatric neuroradiologist preferred CS for imaging artifacts and sharpness. Compared to CS, the CIRIM reconstructions significantly improved in terms of imaging artifacts and anatomic conspicuity (p < 0.01) for higher resolution scans while yielding a 28% higher SNR (p = 0.001) and a 5.8% lower CR (p = 0.04). There were no differences between patient groups. Additionally, CIRIM was five times faster than CS was. An increasing acceleration factor did not lead to changes in CR (p = 0.92), but led to lower SSIM (p = 0.002). Discussion Patients with neurological deficits can undergo MRI at a range of moderate to high acceleration. DL reconstruction outperforms CS in terms of image resolution, efficient denoising with a modest reduction in contrast and reduced reconstruction times.

Funder

Health~Holland

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3