Impact of compressed sensing (CS) acceleration of two-dimensional (2D) flow sequences in clinical paediatric cardiovascular magnetic resonance (CMR)

Author:

Moscatelli Sara,Gatehouse PeterORCID,Krupickova Sylvia,Mohiaddin Raad,Voges Inga,Giese Daniel,Nielles-Vallespin Sonia,Pennell Dudley J.

Abstract

Abstract Objectives Two-dimensional (2D) through-plane phase-contrast (PC) cine flow imaging assesses shunts and valve regurgitations in paediatric CMR and is considered the reference standard for Clinical quantification of blood Flow (COF). However, longer breath-holds (BH) can reduce compliance with possibly large respiratory manoeuvres altering flow. We hypothesize that reduced BH time by application of CS (Short BH quantification of Flow) (SBOF) retains accuracy while enabling faster, potentially more reliable flows. We investigate the variance between COF and SBOF cine flows. Methods Main pulmonary artery (MPA) and sinotubular junction (STJ) planes were acquired at 1.5 T in paediatric patients by COF and SBOF. Results 21 patients (mean age 13.9, 10–17y) were enrolled. The BH times were COF mean 11.7 s (range 8.4–20.9 s) vs SBOF mean 6.5 s (min 3.6–9.1 s). The differences and 95% CI between the COF and SBOF flows were LVSV -1.43 ± 13.6(ml/beat), LVCO 0.16 ± 1.35(l/min) and RVSV 2.95 ± 12.3(ml/beat), RVCO 0.27 ± 0.96(l/min), QP/QS were SV 0.04 ± 0.19, CO 0.02 ± 0.23. Variability between COF and SBOF did not exceed intrasession variation of COF. Conclusion SBOF reduces breath-hold duration to 56% of COF. RV flow by SBOF was biased compared to COF. The variation (95% CI) between COF and SBOF was similar to the COF intrasession test–retest 95% CI.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3