MRI of kidney size matters

Author:

Niendorf ThoralfORCID,Gladytz Thomas,Cantow Kathleen,Klein Tobias,Tasbihi Ehsan,Velasquez Vides Jose Raul,Zhao Kaixuan,Millward Jason M.ORCID,Waiczies Sonia,Seeliger Erdmann

Abstract

Abstract Objective To highlight progress and opportunities of measuring kidney size with MRI, and to inspire research into resolving the remaining methodological gaps and unanswered questions relating to kidney size assessment. Materials and methods This work is not a comprehensive review of the literature but highlights valuable recent developments of MRI of kidney size. Results The links between renal (patho)physiology and kidney size are outlined. Common methodological approaches for MRI of kidney size are reviewed. Techniques tailored for renal segmentation and quantification of kidney size are discussed. Frontier applications of kidney size monitoring in preclinical models and human studies are reviewed. Future directions of MRI of kidney size are explored. Conclusion MRI of kidney size matters. It will facilitate a growing range of (pre)clinical applications, and provide a springboard for new insights into renal (patho)physiology. As kidney size can be easily obtained from already established renal MRI protocols without the need for additional scans, this measurement should always accompany diagnostic MRI exams. Reconciling global kidney size changes with alterations in the size of specific renal layers is an important topic for further research. Acute kidney size measurements alone cannot distinguish between changes induced by alterations in the blood or the tubular volume fractions—this distinction requires further research into cartography of the renal blood and the tubular volumes.

Funder

Helmholtz Association

Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC)

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantitative body magnetic resonance imaging: how to make it work;Magnetic Resonance Materials in Physics, Biology and Medicine;2024-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3