Impact of truncating diffusion MRI scans on diffusional kurtosis imaging

Author:

Fouto Ana R.ORCID,Henriques Rafael N.,Golub Marc,Freitas Andreia C.,Ruiz-Tagle Amparo,Esteves Inês,Gil-Gouveia Raquel,Silva Nuno A.,Vilela Pedro,Figueiredo Patrícia,Nunes Rita G.

Abstract

Abstract Objective Diffusional kurtosis imaging (DKI) extends diffusion tensor imaging (DTI), characterizing non-Gaussian diffusion effects but requires longer acquisition times. To ensure the robustness of DKI parameters, data acquisition ordering should be optimized allowing for scan interruptions or shortening. Three methodologies were used to examine how reduced diffusion MRI scans impact DKI histogram-metrics: 1) the electrostatic repulsion model (OptEEM); 2) spherical codes (OptSC); 3) random (RandomTRUNC). Materials and methods Pre-acquired diffusion multi-shell data from 14 female healthy volunteers (29±5 years) were used to generate reordered data. For each strategy, subsets containing different amounts of the full dataset were generated. The subsampling effects were assessed on histogram-based DKI metrics from tract-based spatial statistics (TBSS) skeletonized maps. To evaluate each subsampling method on simulated data at different SNRs and the influence of subsampling on in vivo data, we used a 3-way and 2-way repeated measures ANOVA, respectively. Results Simulations showed that subsampling had different effects depending on DKI parameter, with fractional anisotropy the most stable (up to 5% error) and radial kurtosis the least stable (up to 26% error). RandomTRUNC performed the worst while the others showed comparable results. Furthermore, the impact of subsampling varied across distinct histogram characteristics, the peak value the least affected (OptEEM: up to 5% error; OptSC: up to 7% error) and peak height (OptEEM: up to 8% error; OptSC: up to 11% error) the most affected. Conclusion The impact of truncation depends on specific histogram-based DKI metrics. The use of a strategy for optimizing the acquisition order is advisable to improve DKI robustness to exam interruptions.

Funder

Fundação para a Ciência e a Tecnologia

Programa Operacional Regional de Lisboa 2020

Universidade de Lisboa

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3