3D magnetic resonance fingerprinting on a low-field 50 mT point-of-care system prototype: evaluation of muscle and lipid relaxation time mapping and comparison with standard techniques

Author:

O’Reilly Thomas,Börnert Peter,Liu Hongyan,Webb Andrew,Koolstra KirstenORCID

Abstract

Abstract Objective To implement magnetic resonance fingerprinting (MRF) on a permanent magnet 50 mT low-field system deployable as a future point-of-care (POC) unit and explore the quality of the parameter maps. Materials and methods 3D MRF was implemented on a custom-built Halbach array using a slab-selective spoiled steady-state free precession sequence with 3D Cartesian readout. Undersampled scans were acquired with different MRF flip angle patterns and reconstructed using matrix completion and matched to the simulated dictionary, taking excitation profile and coil ringing into account. MRF relaxation times were compared to that of inversion recovery (IR) and multi-echo spin echo (MESE) experiments in phantom and in vivo. Furthermore, B0 inhomogeneities were encoded in the MRF sequence using an alternating TE pattern, and the estimated map was used to correct for image distortions in the MRF images using a model-based reconstruction. Results Phantom relaxation times measured with an optimized MRF sequence for low field were in better agreement with reference techniques than for a standard MRF sequence. In vivo muscle relaxation times measured with MRF were longer than those obtained with an IR sequence (T1: 182 ± 21.5 vs 168 ± 9.89 ms) and with an MESE sequence (T2: 69.8 ± 19.7 vs 46.1 ± 9.65 ms). In vivo lipid MRF relaxation times were also longer compared with IR (T1: 165 ± 15.1 ms vs 127 ± 8.28 ms) and with MESE (T2: 160 ± 15.0 ms vs 124 ± 4.27 ms). Integrated ΔB0 estimation and correction resulted in parameter maps with reduced distortions. Discussion It is possible to measure volumetric relaxation times with MRF at 2.5 × 2.5 × 3.0 mm3 resolution in a 13 min scan time on a 50 mT permanent magnet system. The measured MRF relaxation times are longer compared to those measured with reference techniques, especially for T2. This discrepancy can potentially be addressed by hardware, reconstruction and sequence design, but long-term reproducibility needs to be further improved.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3