A large deformation gradient theory for glassy polymers by means of micromorphic regularization

Author:

Hamdoun Ayoub,Mahnken Rolf

Abstract

AbstractCold forming of polycarbonate films results in the formation of shear bands in the necking zone. The numerical results obtained from standard viscoplastic material models exhibit mesh size dependency, requiring mathematical regularization. For this purpose, we present in this work a large deformation gradient theory for a viscoplastic isotropic material model published before. We extend our model to a micromorphic model by introducing a new micromorphic variable as an additional degree of freedom along with its first gradient. This variable represents a microequivalent plastic strain. The relation between the macroequivalent plastic strain and the micromorphic variable is accomplished by a micromorphic coupling modulus. This coupling forces proximity between the macro- and microvariables, leading to the targeted regularization effect. The micromorphic model is implemented as a three-dimensional initial boundary value problem in an in-house finite element tool. The analysis is performed for both uniaxial and biaxial specimens. The provided numerical examples show the ability of our model to regularize shear bands within the specimens and address the issue of localization.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3