A receptance-based method for frequency assignment via coupling of subsystems

Author:

Tsai Sung-HanORCID,Ouyang HuajiangORCID,Chang Jen-Yuan

Abstract

Abstract This paper presents a theoretical study of the frequency assignment problem of a coupled system via structural modification of one of its subsystems. It deals with the issue in which the available modifications are not simple; for example, they are not point masses, grounded springs, or spring-mass oscillators. The proposed technique is derived based on receptance coupling technique and formulated as an optimization problem. Only a few receptances at the connection ends of each subsystem are required in the structural modification process. The applicability of the technique is demonstrated on a simulated rotor system. The results show that both bending natural frequencies and torsional natural frequencies can be assigned using a modifiable joint, either separately or simultaneously. In addition, an extension is made on a previously proposed torsional receptance measurement technique to estimate the rotational receptance in bending. Numerical simulations suggest that the extended technique is able to produce accurate estimations and thus is appropriate for this frequency assignment problem of concern.

Funder

University of Liverpool

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new general method for assigning frequencies with low spillover through structural modifications;Journal of Low Frequency Noise, Vibration and Active Control;2023-07-07

2. Cutting Process Consideration in Dynamic Models of Machine Tool Spindle Units;Machines;2023-05-23

3. Effect of elastic couplings on the dynamic behavior of transmission systems;Comptes Rendus. Mécanique;2022-07-20

4. FRF of a coupled geared system using the frequency based substructuring and condensation methods;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-03-10

5. Assignment of Natural Frequencies and Mode Shapes Based on FRFs;Aerospace;2021-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3