Stacked multi-wedge acoustic black holes for low-frequency attenuation of flexible beams

Author:

Käfer Max,Dohnal Fadi

Abstract

Abstract Machines and other driving components like compressors or fans usually generate vibrations which frequently lead to acoustic noise. Flexible structures equipped with acoustic black holes minimise acoustic radiation by confining structural vibrations locally. One main restriction of its usage in the broad engineering field is its limited effectiveness at low frequencies. Recent investigations shifted the frequency range of attenuation successfully down to 1500 Hz. Moving the existing designs towards an even lower frequency demands a large structure. However, in general, sufficient space is often not available in machines and facilities. We propose a new design that enables a geometrically compact and simultaneously broadband vibration attenuation in the low-frequency below to 100 Hz: stacked wedges. The proposed design is calculated and optimised numerically by combining CAD and finite element calculations. The influence of geometrical parameters on the effectiveness of vibration attenuation is analysed with the help of transfer functions and dispersion curves. Successful designs of multi-stacked wedges at different lengths confirm their effectiveness at low frequency. Graphical abstract

Funder

FH Vorarlberg - University of Applied Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3