An enhanced deep learning approach for vascular wall fracture analysis

Author:

Tragoudas Alexandros,Alloisio Marta,Elsayed Elsayed S.,Gasser T. Christian,Aldakheel FadiORCID

Abstract

AbstractThis work outlines an efficient deep learning approach for analyzing vascular wall fractures using experimental data with openly accessible source codes (https://doi.org/10.25835/weuhha72) for reproduction. Vascular disease remains the primary cause of death globally to this day. Tissue damage in these vascular disorders is closely tied to how the diseases develop, which requires careful study. Therefore, the scientific community has dedicated significant efforts to capture the properties of vessel wall fractures. The symmetry-constrained compact tension (symconCT) test combined with digital image correlation (DIC) enabled the study of tissue fracture in various aorta specimens under different conditions. Main purpose of the experiments was to investigate the displacement and strain field ahead of the crack tip. These experimental data were to support the development and verification of computational models. The FEM model used the DIC information for the material parameters identification. Traditionally, the analysis of fracture processes in biological tissues involves extensive computational and experimental efforts due to the complex nature of tissue behavior under stress. These high costs have posed significant challenges, demanding efficient solutions to accelerate research progress and reduce embedded costs. Deep learning techniques have shown promise in overcoming these challenges by learning to indicate patterns and relationships between the input and label data. In this study, we integrate deep learning methodologies with the attention residual U-Net architecture to predict fracture responses in porcine aorta specimens, enhanced with a Monte Carlo dropout technique. By training the network on a sufficient amount of data, the model learns to capture the features influencing fracture progression. These parameterized datasets consist of pictures describing the evolution of tissue fracture path along with the DIC measurements. The integration of deep learning should not only enhance the predictive accuracy, but also significantly reduce the computational and experimental burden, thereby enabling a more efficient analysis of fracture response.

Funder

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3