A thermodynamically consistent quasi-double-porosity thermo-hydro-mechanical model for cell dehydration of plant tissues at subzero temperatures

Author:

Eurich LukasORCID,Schott Rena,Shahmoradi Shahla,Wagner Arndt,Borja Ronaldo I.,Roth-Nebelsick Anita,Ehlers Wolfgang

Abstract

AbstractMany plant tissues exhibit the property of frost resistance. This is mainly due to two factors: one is related to metabolic effects, while the other stems from structural properties of plants leading to dehydration of their cells. The present contribution aims at assessing the impact of ice formation on frost-resistant plant tissues with a focus on structural properties specifically applied to Equisetum hyemale. In this particular case, there is an extracellular ice formation in so-called vallecular canals and the pith cavity, which leads to a dehydration of the tissue cells to avoid intracellular ice formation, what would be fatal for the cells and subsequently for the whole plant. To address the underlying phenomena in the plant, a coupled thermo-hydro-mechanical model based on the Theory of Porous Media is introduced as the modelling framework. The dehydration of the tissue cells is referred to as of quasi-double-porosity nature, since the water is mobile within the intercellular space, but confined to the cells in the intracellular space and consequently kinematically coupled to them. However, the mass exchange of water across the cell wall is considered. The presented numerical example shows the strong coupling of the underlying processes as well as the quasi-double-porosity feature. Finally, it supports the experimental finding of the vallecular canals as the main location of ice formation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3