Abstract
AbstractFerroelectric phase field models based on the Ginzburg–Landau–Devonshire theory are characterized by a large number of material parameters with problematic physical interpretation. In this study, we systematically address the relationship between these parameters and the main properties of ferroelectric domain walls. A variational approach is used to derive closed form solutions for the polarization fields at the phase transition regions as well as for the propagation velocities of the domain walls. Introducing a modified set of material parameters, which appropriately scales different contributions to the free energy, we are able to accurately calibrate these parameters based on domain wall thickness and energy of both 180$$^\circ $$
∘
and 90$$^\circ $$
∘
domain walls. Moreover, the mobility parameter appearing in the Ginzburg–Landau evolution equation can be accurately calibrated based on the propagation velocity of the domain walls.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献