Reduced order homogenization of thermoelastic materials with strong temperature dependence and comparison to a machine-learned model

Author:

Sharba Shadi,Herb Julius,Fritzen FelixORCID

Abstract

AbstractIn this work, an approach for strongly temperature-dependent thermoelastic homogenization is presented. It is based on computational homogenization paired with reduced order models (ROMs) that allow for full temperature dependence of material parameters in all phases. In order to keep the model accurate and computationally efficient at the same time, we suggest the use of different ROMs at few discrete temperatures. Then, for intermediate temperatures, we derive an energy optimal basis emerging from the available ones. The resulting reduced homogenization problem can be solved in real time. Unlike classical homogenization where only the effective behavior, i.e., the effective stiffness and the effective thermal expansion, of the microscopic reference volume element are of interest, our ROM delivers also accurate full-field reconstructions of all mechanical fields within the microstructure. We show that the proposed method referred to as optimal field interpolation is computationally as efficient as simplistic linear interpolation. However, our method yields an accuracy that matches direct numerical simulation in many cases, i.e., very accurate real-time predictions are achieved. Additionally, we propose a greedy sampling procedure yielding a minimal number of direct numerical simulations as inputs (two to six discrete temperatures are used over a range of around 1000 K). Further, we pick up a black box machine-learned model as an alternative route and show its limitations in view of the limited amount of training data. Using our new method to generate an abundance of data, we demonstrate that a highly accurate tabular interpolator can be gained easily.

Funder

Deutsche Forschungsgemeinschaft

AiF Projekt

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A monolithic hyper ROM FE2 method with clustered training at finite deformations;Computer Methods in Applied Mechanics and Engineering;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3